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Abstract

Broadly applicable analytical algorithms for workspace of serial manipulators with non-unilateral constraints are developed and

illustrated. The Jacobian row-rank deficiency method is employed to determine the singularities of these manipulators. There are four

types of singularity sets: Type I: position Jacobian singularities; Type II: instantaneous singularities that are due to a generalized joint

that is reaching its apex; Type III: domain boundary singularities, which are associated with the initial and final values of the time

interval; Type IV: coupled singularities, which are associated with a relative singular Jacobian, where the null space is reduced in one sub-

matrix due to either of two occurrences: a Type II or a Type III singularity. All of the singular surfaces are hypersurfaces that extend

internally and externally the workspace envelope. Intersecting singular surfaces identifies singular curves that partition singular surfaces

into subsurfaces, and a perturbation method is used to identify regions (curve segments/surface patches) of the hypersurfaces that are on

the boundary. The formulation is illustrated by implementing it to a spatial 3-degree of freedom (DOF) and a spatial 4-DOF

manipulator.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Considerable effort has been directed towards formulations of mathematical methods for determining workspaces of
manipulators. The study of manipulator workspaces has been identified in the fields of manufacturing for efficient
placement of robots on the shop floor and for securing the maximum functionality of a manipulator in terms of dexterity.
Other applications environments include the medical field, where the use of mechanisms and machines in medical
interventions has become very common, and in the manufacturing arena, where manipulators are used for welding,
painting, etc.

Vinagradov [36], in one of the earliest studies on the subject of manipulator performance in terms of workspace,
introduced the term ‘‘service sphere’’. Roth [29] introduced the relationship between kinematic geometry and manipulator
performance, including workspace. A numerical approach to this relationship, by tracing boundary surfaces of a
workspace was formulated and solved by Kumar and Waldron [21]. The reciprocal screw method [34] for workspace
generation is based on the fact that when the end-effector reference point of the manipulator is on the workspace
boundary; all joint axes of a manipulator are reciprocal to a zero pitch wrench axis. For each degree-of-freedom (DOF)
lost, there exists one reciprocal screw which, if applied as a wrench to the end-effector, produces no virtual work for the
e front matter r 2006 Elsevier Ltd. All rights reserved.
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manipulator joints. Wang and Waldron [38], based upon earlier work [37], stated that the Jacobian of the manipulator
becomes singular if its columns, which are screw quantities, do not span the full rank of the matrix, thus reducing the
Jacobian rank by at least one.

Litvin [23] used the implicit function theorem to define singular configurations of mechanisms as criteria for boundaries
of workspaces. An enumeration of singular configurations due to the vanishing of the determinant of the Jacobian and the
Jacobian’s minors was presented by Lipkin and Pohl [22]. Shamir [30] provided an analytical tool to determine whether the
singularities are avoidable for 3-DOF manipulators. Analytical conditions associated with special features of the geometry
of specific manipulators have been used by a several researchers to obtain explicit criteria for boundaries of workspaces
[15,31,35,42]. Singularity of the velocity transformation between input and output coordinates has been used to
characterize singular surfaces of manipulators [21,37]. Other studies on the subject of manipulator workspaces can be
found in Gupta [18], Sugimoto and Duffy [33], Davidson and Hunt [11], Agrawal [4], Gosselin and Angeles [17], Emiris
[14], Pennock and Kassner [27], Ceccarelli [9], and Zhang et al. [41].

Haug et al. [20] formulated numerical criteria for finding the accessible output set of a general multi-DOF system using a
continuation method to trace boundary curves suitable for the study of both open- and closed-loop manipulators. The
initial criteria for this computational method were presented by Haug et al. [19] and Wang and Wu [39]. The algorithm
computes tangent vectors at bifurcation points of continuation curves that define the boundary of manipulator
workspaces. A cross-section of the workspace is obtained, and boundary continuation curves are traced. Qiu et al. [28]
demonstrated this method for a closed-loop mechanism called the Stewart Platform, where continuation curves are
evaluated on the exterior boundary of the accessible output set. These curves are then assembled into a mesh that is
enveloped by appropriate surface patches. This method has proven valid for determining the general shape of the accessible
output set. Its main difficulty is in determining the status of the singularity points along continuation curves. Although
singular behavior occurring at points along the curves is identified, this method is completely numerical and only traces
boundary curves. It does not result in analytical surfaces bounding the accessible output set. An algebraic formulation for
determining the workspace of four-revolute manipulators was recently presented by Ceccarelli and Vinciguerra [8]. This
method can determine holes and voids in the accessible output set. Bulca et al. [6] developed a technique, based on the
Euler–Rodrigues parameters of the rotation of a rigid body, for determining the workspace of spherical platform
mechanisms. Cavusoqlu et al. [7] proposed a quantitative method to evaluate the kinematic ability of surgical manipulators
to perform the critical tasks of suturing and knot-tying. Their proposed method does not require a physical prototype;
instead, it runs typical tool motions during these tasks through the inverse kinematics of the manipulators and checks the
system for its ability to accommodate the desired motions. Wang et al. [40] introduced the workspace analysis of a special
manipulator, which is a closed-chain design offering high payload, high stiffness, and low inertia, but at the expense of
limited workspace. The resulting workspace is shown to be complex, but manageable, which enables it to be used for on-
line planning and collision avoidance. Snyman et al. [45] presented an optimization-based approach for determining the
boundaries of serial and parallel manipulator workspaces. Monsarrat and Gosselin [24] introduced the determination of
the singularity loci of a 6-DOF spatial parallel platform mechanism of a new type that can be statically balanced. St-Onge
and Gosselin [32] studied the singularity loci of the Gough–Stewart platform and obtain a graphical representation of these
loci in the manipulator’s workspace. Ceccarelli and Ottaviano [10] proposed a numerical procedure for determining and
evaluating the workspace of the eclipse robot architecture, which is a novel parallel architecture. Di Gregorio and
Zanforlin [13] reported the analytic expression of the surfaces bounding the workspace in the coordinates of a platform
point, which contains all the manipulator geometric parameters by a fourth degree polynomial equation. This analytic
expression is given in an explicit form.

In our earlier work [1–3], we used singular behavior to identify the serial manipulator, where only unilateral constraints
were considered. Yang and Abdel-Malek [43] extended the Jacobian row-rank deficiency method to serial manipulators
with non-unilateral constraints and studied the singular behavior. Yang and Abdel-Malek [44] studied the singular
characteristics for both unilateral and un-unilateral constraints. In this paper, we first apply Jacobian row-rank deficiency
conditions to determine the singular hypersurfaces of manipulators with non-unilateral constraints, then implement
surface/surface intersection to partition singular surfaces, finally, propose a perturbation algorithm to identify the
boundary of the workspace, where joints are described as functions of time and where each joint may or may not be
independent of another joint.
2. Formulation

In order to find the analytical boundary of the manipulator workspace, the kinematics of the underlying mechanism will
be formulated. In this section, we will (1) define the unilateral and non-unilateral constraints, (2) determine singular
surfaces, (3) determine singular curves that partition singular surfaces to subsurfaces and identify which subsurfaces are on
the boundary.
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2.1. Unilateral and non-unilateral constraints

We define q 2 <n as the vector of n-generalized joint coordinates characterizing a manipulator configuration. The vector
function generated by a point on the end-effector of a serial arm, written as a multiplication of rotation matrices and
position vectors, is expressed by

UðqðtÞÞ ¼

xðqðtÞÞ

yðqðtÞÞ

zðqðtÞÞ

2
64

3
75 ¼Xi¼n

i¼1

Yj¼i�1

j¼1

j�1Rj

" #
i�1pi, (1)

where qðtÞ ¼ ½ q1ðt1Þ q2ðt2Þ . . . qnðtnÞ �T, t ¼ ½ t1 . . . tn �
T is the vector of time variables for each joint, and both ipj

and iRj are defined using the Denavit–Hartenberg representation method [12,16] such that

i�1Ri ¼

cos yi � cos ai sin yi sin ai sin yi

sin yi cos ai cos yi � sin ai cos yi

0 sin ai cos ai

2
64

3
75 (2)

and

ði�1Þpi ¼ ½ ai cos yi ai sin yi di �
T, (3)

where yi is the joint angle from xi�1 axis to the xi axis, di is the shortest distance between xi�1 and xi axes, ai is the offset
distance between zi and zi�1 axes, and ai is the offset angle from zi�1 and zi axes. The generalized variable is qi ¼ di if the
joint is prismatic, and qi ¼ yi if the joint is revolute.

The joint angle qi is defined by qi ¼ f ðtiÞ and tLi ptiptUi , where L denotes the lower limit, and U denotes the upper limit.
If f(ti) is a monotonic increasing function and there also exists df ðtiÞ=dtia0 for ti 2 ðt

L
i ; t

U
i Þ, then qi is called unilateral

constraints (e.g. Fig. 1(a)). For any joint function qj ¼ gðtjÞ and tLj ptjptUj , if there exists dgðtjÞ=dtj ¼ 0 for tj 2 ðt
L
j ; t

U
j Þ,

then qj is called non-unilateral constraints (e.g. Fig. 1(b)), where i; j ¼ 1; . . . ; n.
Although the user give the joint limits qL

i pqipqU
i , the real joint profiles are unilateral or non-unilateral constraints. It is

obvious that the singularities of manipulators are different for unilateral and non-unilateral cases. This paper focuses on
the workspace boundary determination of manipulators with non-unilateral constraints.
2.2. Singularity analysis

The vector function U(q(t)) in Eq. (1) characterizes the set of all points inside and on the boundary of the workspace as a
function of time for non-unilateral constraints. The aim of this work is to determine the boundary to this set and to
analytically represent it.
I
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Fig. 1. Joint profiles: (a) Unilateral constraints; (b) Non-unilateral constraints.
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At a specified position in space x ¼ ½ x0 y0 z0 �T, Eq. (1) can be written as a constraint function

XðqðtÞÞ ¼

xðqðtÞÞ � x0

yðqðtÞÞ � y0

zðqðtÞÞ � z0

2
64

3
75 ¼ 0 (4)

and the joint functions can be written as a constraint function

CðtÞ ¼

q1ðt1Þ � q1ðt
0
1Þ

..

.

qnðtnÞ � qnðt
0
nÞ

2
664

3
775 ¼ 0, (5)

where constraints on the time variables are imposed in terms of inequalities in the form of tLi ptiptUi , where i ¼ 1; . . . n,
are transformed into a parametric equation by introducing a new set of generalized coordinates l ¼ ½l1; l2; . . . ; ln�

T

such that

ti ¼ ððt
L
i þ tUi Þ=2Þ þ ððt

U
i � tLi Þ=2Þ sin li i ¼ 1; . . . ; n. (6)

Eq. (6) can be written as t ¼ PðkÞ. In the field of optimization, these generalized coordinates li are called slack variables.
They effectively enable inequality constraints to be considered into the formulation. In order to include the effect of joints
with non-unilateral constraints and time limits, augmentation of the constraint equation X(q(t)) with the parameterized
inequality constraints is proposed, such that

Hðq�Þ ¼

xðqðtÞÞ � x0

yðqðtÞÞ � y0

zðqðtÞÞ � z0

qiðtiÞ � qiðt
0
i Þ

ti � ððt
L
i þ tUi Þ=2Þ � ððt

U
i � tLi Þ=2Þ sin li

2
6666664

3
7777775
¼ 0 i ¼ 1; . . . n, (7)

where q� ¼ ½ qT tT lT �T is the vector of all generalized coordinates. Note that although 2n new variables (ti and li) have
been added, 2n equations have also been added to the constraint vector function, without losing the dimensionality of the
problem.

To implement the Implicit Function Theorem, we investigate the Jacobian of the constraint function H(q*) at a point q*0

is the (3+2n)� 3n matrix

Hq� ðq
�0Þ ¼ qH=qq�, (8)

where the subscript denotes a derivative. With the modified formulation including the parameterized inequality constraints,
the Jacobian is expanded as

Hq� ¼

Uq 01 02

I Ct 03

04 I tk

2
64

3
75, (9)

where the notation xq1 denotes the partial derivative of x with respect to q1, i.e., qx/qq1, and

Uq ¼

xq1 xq2 . . . xqn

yq1
yq2

. . . yqn

zq1 zq2 . . . zqn

2
64

3
75; Ct ¼ _q ¼

dq1

dt1
0 � � � 0

0
dq2

dt2
� � � 0

..

. ..
. . .

. ..
.

0 0 � � �
dqn

dtn

2
66666666664

3
77777777775
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and

tl ¼

�ððtU1 � tL1 Þ=2Þ cos l1 0 � � � 0

0 �ððtU2 � tL2 Þ=2Þ cos l2 � � � 0

� � � � � � . .
.

� � �

0 0 0 �ððtUn � tLn Þ=2Þ cos ln

2
666664

3
777775

are diagonal block matrices, 01 and 02 are (3� n) zero matrices, 03 and 04 are (n� n) zero matrices, and I is (n� n) an
identity matrix.

We define the boundary of the workspace qW (workspace envelope) as a subset of the workspace at which the Jacobian of
the constraint function of Eq. (7) is row-rank deficient, i.e.,

qW � fRank Hq� ðq
�Þok; for some q� with Hðq�Þ ¼ 0g (10)

where k is at least (3+2n�1). For an n-DOF system, the Jacobian Hq� ðq
�0Þ is row-rank deficient if and only if one of the

following conditions are satisfied.

2.2.1. Type I: Jacobian singularities

If there are no ti that reach their limits, i.e., tiatUi and tiatLi , and there are no joints with dqi=dti ¼ 0, the diagonal
submatrices [Ct] and [tk] are full row rank. Therefore, the only possibility for ½Hq� � to be row-rank deficient is when the
block matrix [Uq] is row-rank deficient. Define two independent sub-vectors of q as p and u, where

q ¼ ½ pT uT �T where p; u 2 q and p \ u ¼ f. (11)

If u 2 Rm then p 2 Rðn�mÞ.
Type I singularity set can be defined as

Sð1Þ � fp 2 q : Rank½Uq�o3 for some constant subset of qg, (12)

where p is within the specified joint limit constraints.

2.2.2. Type II: instantaneous singularities

When we find there are m (mX2) joints that have dqi=dti ¼ 0, then Type II singularities are

Sð2Þ � fp 2 <ðn�2Þ : p � qtinst ¼ ½tinsti ; tinstj ; . . .�g. (13)

2.2.3. Type III singularities

Type III singularities are defined as

Sð3Þ � fp 2 <ðn�2Þ : p � qtinst [ qtLimit ¼ ½tinsti ; tinstj ; . . .� [ ½tlimit
i ; tlimit

j ; . . .�g. (14)

2.2.4. Type IV: coupled singularities

When certain ti reach their limits, e.g., ½ti; tj ; tk� ¼ ½t
limit
i ; tlimit

j ; tlimit
k �, the corresponding diagonal elements in the matrix [tk]

will be equal to zero. For example, if ti ¼ tLi (or tUi ), the diagonal element of ½qt=ql�ii will be zero (i.e., bi cos li is zero for
either i ¼ 1; . . . ; n where ti has reached a limit). When certain ti reach their instantaneous points (e.g., dqi=dti ¼ 0), e.g.,
½ti; tj ; tk� ¼ ½t

inst
i ; tinstj ; tinstk �, the corresponding diagonal elements in the matrix [Ct] will be equal to zero.

Solving the row-rank deficiency condition for Eq. (7) is equivalent to solving the rank deficiency for

½Uqg½Uqi
;Uqj

;Uqk
�� (15)

with

qi ¼ qlimit
i ; qj ¼ qlimit

j ; qk ¼ qlimit
k or qi ¼ qinst

i ; qj ¼ qinst
j ,

qk ¼ qinst
k ,

where the notation of Eq. (15) represents the exclusion of the right matrix from the left matrix, and it represents the
submatrix of [Uq] when ti are at their limits or instantaneous points.

From the foregoing observation, the fourth type of singular sets is formulated. Define a new vector qqðtlimitÞ ¼

½qiðt
limitÞ; qjðt

limitÞ; qkðt
limitÞ�T, or qqðtinstÞ ¼ ½qiðt

instÞ; qjðt
instÞ; qkðt

instÞ�T, which is a sub-vector of q where

1pdimðqqðtlimit or tinstÞÞpðn� 3Þ. (16)
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For the case of dimðqqðtlimit or tinstÞÞ ¼ ðn� 2Þ, note that the solution of Eq. (7) is readily available, as will be discussed in
the following sections. The joint coordinates can be partitioned as

q ¼ ½wT; qqðtlimit or tinstÞT�T and w \ qqðtlimit or tinstÞ ¼ f. (17)

Then, if ½Uwðw; qqðtlimit or tinstÞÞ� is row-rank deficient, the subJacobian [Uq] is also rank deficient. Let the solution for this
condition be denoted by p̂, which is a constant subvector of w, and w ¼ ½uT; p̂T�T. The type IV singularity set is defined as

Sð4Þ � fp ¼ ½p̂ [ qqðtlimit or tinstÞ� : Rank½Uqðw; qqðtlimit or tinstÞÞ�o3; for some p̂ 2 w; dimðqqðtlimit or tinstÞÞpðn� 3Þg.

(18)

The singular set for the manipulator is a combination of the above four types of singularity sets: S(1), S(2), S(3), and S(4),
such that

S ¼ Sð1Þ [ Sð2Þ [ Sð3Þ [ Sð4Þ ¼ fp1; p2; . . . ; pnsg, (19)

where ns is the total number of singular vectors p. Substituting these singular vectors into the position vector function of
the end-effector in Eq. (1) yields ns parametric singular entities

viðuijpiÞ for i ¼ 1; . . . ; ns. (20)

In general, unless otherwise stated, those entities are parametric surfaces and are denoted by singular surfaces. The vector
ui represents the joint coordinates used as the parameters of the singular surface i, and pi is the constant singular vector.

2.3. Determining the boundary

In order to determine the intersection between two parametric surfaces, one parameterized as

v1ðu; vÞ; u1pupu2; v1pvpv2 (21)

and the other parameterized as

v2ðs;wÞ; s1psps2; w1pwpw2, (22)

a solution to the following equation is necessary:

v1ðu; vÞ � v2ðs;wÞ ¼ 0 (23)

subject to inequality constraints imposed on the joints in the form of Eq. (6). Eq. (23) can thus be augmented by the
inequality constraints as

GðlÞ ¼

v1ðu; vÞ � v2ðs;wÞ

u�
u1 þ u2

2
�
ðu2 � u1Þ

2
sin k1

v�
v1 þ v2

2
�
ðv2 � v1Þ

2
sin k2

s�
s1 þ s2

2
�
ðs2 � s1Þ

2
sin k3

w�
w1 þ w2

2
�
ðw2 � w1Þ

2
sin k4

2
66666666666664

3
77777777777775
, (24)

where l ¼ u v s w k1 k2 k3 k4
� �T

. Since the Jacobian of G(l) is not square, the problem of obtaining an initial
solution (initial point) can be solved using the Moore–Penrose inverse [5]. The new generalized coordinates are calculated
by evaluating

Dl ¼ G�lð�GÞ, (25)

where G�l is the Moore–Penrose pseudoinverse of the Jacobian Gl ¼ ½qGi=qmi�, defined by

G�l ¼ GT
l ðGlG

T
l Þ
�1. (26)

This method converges within a few iterations without adding any new constraints [5]. Another method for determining
a starting point for a surface–surface intersection problem was developed by Muellenheim [25]. Once a starting point is
found, the intersection curve is traced along the tangent direction by using the so-called marching method developed by
Pratt and Geisow [26]. The algorithm requires a vector tangent direction to compute marching parameters. Let v1

u denote
the derivative of v1 with respect to u and v1

v denote the derivative of v1 with respect to v. The cross-product of these vectors
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results in a normal vector to the surface such that

N1 ¼ ðv1
u � v1

vÞ=jjv
1
u � v1

v jj. (27)

Similarly, the normal vector at a point on the second surface is defined by

N2 ¼ ðv2
s � v2

wÞ=jjv
2
s � v2

wjj. (28)

The tangent vector s is computed as

s ¼ N1 �N2. (29)

The new step constraint equation can be written as

½v1ðu; vÞ � v0� � s� c ¼ 0, (30)

where v0 is the computed point, and c is the step size.
Although this method will converge to a solution, it is possible to find only one starting point, and thus only one

corresponding branch of intersection will be traced. The problem of numerically determining the intersection curve is
complicated when several curves exist, in which case tangents at the bifurcation point have to be computed.

The physical significance of singular curves stems from having two constant generalized coordinates, i.e., the
manipulator loses at least two degrees of mobility. These singular curves partition singular surfaces into a number of
regions called subsurfaces denoted by wi. For a singular surface, the intersection of curves ck results in nodes Nj. For
example, to determine subsurfaces on surface v3 in Fig. 2(a), it is intersected with v2 and v1 as depicted in Fig. 2(b). The
curves partition this surface to four subsurfaces each bounded by curve segments. These intersections were found by using
a rectangular grid as shown in Fig. 2(c). Two curves are checked to see whether they exist inside an incremental rectangle.
The tolerance (rectangle width) is subsequently decreased. Difficulties in computing the intersection of singular curves may
arise if the curves are interesting at more than one point (along the segment).

Subsurfaces resulting from internal, boundary, and higher-order singularities are computed. Determining whether these
subsurfaces are internal or boundary surfaces remains. This can be performed by perturbing a known point on the
subsurface and determining whether the perturbed points satisfy the constraint equation. Any point can be chosen,
provided that it is not on the boundary of the subsurface. For subsurface wi(u1, v1), the partial derivatives with respect to
the parameterization variables u1 and v1 are qw

i=qu1 and qwi=qv1. At any regular point ûo on the subsurface, these vectors
are linearly independent and tangent to the coordinate curves through û

o. The unit vector is

n0 ¼
qwi

qu1
�

qwi

qv1

� ��
qwi

qu1
�

qwi

qv1

����
����. (31)

For a small perturbation qe about this point and along the normal vector n0, the coordinates of the perturbed point can
be calculated as

xp ¼ wi
ðû

o
Þ 	 q�n0. (32)

For the perturbed point to exist within the workspace, it has to satisfy the constraint equation (7), such that a solution to
the following equation exists:

xp �UðqðtÞÞ

qðtÞ � qðt0Þ

t�PðkÞ

2
64

3
75 ¼ 0. (33)
χ1

χ3

χ2
ψ1 ψ1

ψ2 ψ2

ψ3

ψ 4

N1 N1

N2 N3 N2 N3

ψ 4
ψ 3

singular
curves

c1

c2

c3 c3
c2

c1

(a) (b) (c)

Fig. 2. The intersection and partition of singular surfaces.
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The subsurface wi is an internal surface if and only if there exist solutions of Eq. (33) for both perturbations of 7qe.
Otherwise, it will be on the boundary of the workspace.
3. Illustrative examples

In this section, two examples are provided to demonstrate the formulation for determining the workspace boundaries of
the manipulators with non-unilateral constraints, and to visualize their workspace. The first one is a 3-DOF spatial
example; the second, a 4-DOF spatial example.
3.1. 3-DOF RRR example

A 3-DOF spatial manipulator in Fig. 3 is an example showing the formulation for determining the workspace of this
manipulator. DH parameters are shown in Table 1.

The joint profiles are defined as q1ðt1Þ ¼ �2:26893t21 þ 6:80678t1 � p=4, q2ðt2Þ ¼ 1:5708t2 � p=4, q3ðt3Þ ¼ pt3, where
0pt1p1:91602, 0pt2p1:5, 0pt3p2:0.

The position vector of the end-effector is formulated as

UðqðtÞÞ ¼

10 cos q1 cos q2 cos q3 � 10 sin q1 sin q3 � 10 cos q1 sin q2 þ 20 cos q1 cos q2

10 sin q1 cos q2 cos q3 þ 10 cos q1 sin q3 � 10 sin q1 sin q2 þ 20 sin q1 cos q2

10 sin q2 cos q3 þ 10 cos q2 þ 20 sin q2 þ 50

2
64

3
75 (34)

and the inequality constraints are parameterized as t1 ¼ 0:95801þ 0:95801 sin l1, t2 ¼ 0:75þ 0:75 sin l2, t3 ¼ 1þ sin l3;
where t ¼ ½ t1 t2 t3 �T, k ¼ ½ l1 l2 l3 �T.

The Jacobian matrix is derived as

½Hq� � ¼

Uq 01 02

I Ct 03

04 I tk

2
64

3
75
9�9

, (35)
x0

z0

q2

q3

20

50 q1

z1

z2

10

10

Fig. 3. A spatial 3-DOF RRR manipulator.

Table 1

DH table for the spatial 3-DOF RRR manipulator

yi di ai ai

1 q1 50 0 p/2
2 q2 0 20 �p/2
3 q3 10 10 0
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where

Uq ¼

�10ðc2ð2þ c3Þs1 � s1s2 þ c1s3Þ �10ðc1ðc2 þ ð2þ c3Þs2Þ �10ðc3s1 þ c1c2s3Þ

10ðc1ðc2ð2þ c3Þ � s2Þ �10s1ðc2 þ ð2þ c3Þs2Þ 10ðc1c3 � c2s1s3Þ

0 10ðc2ð2þ c3Þ � s2Þ �10s2s3

2
64

3
75,

Ct ¼

6:80678� 4:53786t1 0 0

0 1:5708 0

0 0 p

2
664

3
775,

tk ¼

�0:95801 cos l1 0 0

0 �0:75 cos l2 0

0 0 � cos l3

2
664

3
775.
3.1.1. Type I: Jacobian singularities

Since [Uq] is a (3� 3) block matrix, there is only one equation that is equal to zero.

Det½Uq� ¼ �2000ðcos q2ð2þ cos q3Þ � sin q2Þ sin q3 ¼ 0. (36)

Solving Eq. (36) yields q3 ¼ 0 or q3 ¼ p Therefore, Jacobian singular sets are p1 ¼ fq3ð0Þg, p2 ¼ fq3ð1Þg.

3.2. Type II: instantaneous singularities

Ct is a (3� 3) matrix, and applying the rank deficiency condition to Ct yields

Det½Ct� ¼ 1:5708pð6:80678� 4:53786t1Þ ¼ 0. (37)

The singular set is therefore p3 ¼ fq1ð1:5Þg.

3.2.1. Type III singularities

Type III singular sets include p4 ¼ fq1ð0Þg, p5 ¼ fq1ð1:91602Þg, p6 ¼ fq2ð0Þg, p7 ¼ fq2ð2:0Þg.
There is no Type IV singularity set because this is a 3-DOF problem. The singular surfaces are shown in Fig. 4.

3.3. Determining subsurfaces

Singular surfaces are divided into subsurfaces by computing curves of intersection between them. Once these curves are
determined and projected onto their respective parametric space of two variables, each region representing a subsurface is
studied for existence on the boundary of the workspace. To illustrate the determination of subsurfaces, consider the
intersection of the two surfaces v4 and v5. The marching method presented in previous section is implemented. The
constraint matrix (Eq. (24)) can be written as

GðlÞ ¼

v1ðu; vÞ � v2ðs;wÞ

u� p� p sin k1

v�
p
8
�

3p
8
sin k2

s� p� p sin k3

w�
p
8
�

3p
8
sin k4

2
6666666664

3
7777777775
. (38)

The starting point l* computed using the Moore–Penrose pseudo inverse is l� ¼ 0:6184 3:4086 0:6184
�

2:8745 0:1928 0:0851 0:1928 � 0:0851�. Using l* as a starting point, the algorithm for mapping marching curves is
employed to continue tracing the curves. In this special case, a bifurcation point is encountered at
lo ¼ 0:7854 3:1416 0:7854 3:1416 0:3398 0:8306� 10�9 0:3398 �0:8306� 10�9

� �
. Two tangents are required

to continue tracing. The computed intersection curves in the parametric space are depicted in Fig. 5(a), and depicted on the
surfaces in Fig. 5(b).
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Fig. 4. Singular surfaces: (a) singular surface v1; (b) singular surface v2; (c) singular surface v3; (d) singular surface v4; (e) singular surface v5; (f) singular
surface v6; and (g) singular surface v7.

J. Yang et al. / Robotics and Computer-Integrated Manufacturing 24 (2008) 60–76 69
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Fig. 6. Singular surface v4 is divided into several subsurfaces.

Fig. 5. Intersection curves between v4 and v5; (a) In the uv space; (b) on the surfaces.

J. Yang et al. / Robotics and Computer-Integrated Manufacturing 24 (2008) 60–7670
In addition to the intersection curves resulting from the intersection between v4 and v5, surface v4 intersects with other
singular surfaces. The computed intersection curves due to other singular surfaces are superpositioned in Fig. 6. These four
singular curves (c1, c2, c3 and c4) partition surface v4 into 12 subsurfaces.

It is necessary to determine the intersection of these curves in order to define the boundary of each subsurface. Singular
curves shown in Fig. 7 are computed numerically, thus, it is difficult to parameterize these curves. The grid method is thus
used to determine points of intersection.

To determine whether each subsurface is a boundary or internal subsurface to the wrist workspace, the
perturbation method is implemented. For example, consider the point p1 on the subsurface w1 which has the
set of generalized coordinates q2ð0:754646Þ ¼ 0:4 and q3ð1:08225Þ ¼ 3:4. Note that the subsurface w1 is defined as
follows:

w1
¼

7:0711 cos q2 cos q3 þ 7:0711ðsin q3 � sin q2Þ þ 14:1421 cos q2

�7:0711 cos q2 cos q3 þ 7:0711ðsin q3 þ sin q3Þ � 14:1421 cos q2

10 cos q2 sin q3 þ 10 cos q2 þ 20 sin q2 þ 50

2
64

3
75 (39)
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Fig. 7. Two views of the enveloped workspace for spatial RRR manipulator.
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and it is shown in Fig. 7. To determine the normal to w1 using Eq. (39), partial derivatives representing tangent vectors are
evaluated such that

qw1

qq2

¼

�7:07 sin q2 cos q3 � 7:07 cos q2 � 14:14 sin q2

7:07 sin q2 cos q3 þ 7:07 cos q2 þ 14:14 sin q2

10 cos q2 cos q3 � 10 sin q2 þ 20 cos q2

2
64

3
75 (40)

and

qw1

qq3

¼

�7:07 cos q2 sin q3 þ 7:07 cos q3

7:07 cos q2 sin q3 þ 7:07 cos q3

�10 sin q2 sin q3

2
64

3
75. (41)

The normal is computed

n ¼
qc1

qq2

�
qc1

qq3

¼

707
�10
ðcos q2ðcos q3Þ

2
� sin q3 cos q3 � sin q3 þ sin q2 cos q3 � 2 cos q2 cos q3Þ

707
�10
ðcos q3 sin q2 þ cos q2ðcos q3Þ

2
� 2 sin q3 � cos q3 sin q3 þ cos q2 cos q3Þ

499849
�5000
ðsin q2 cos q3 � cos q2 cos q3 � sin q2ðcos q3Þ

2
Þ

2
664

3
775. (42)

The unit normal n0 ¼ n=jjnjj at the point ûo on the subsurface w1 is evaluated

n0 ¼
qw1

qq2

�
qw1

qq3

� ��
qw1

qq2

�
qw1

qq3

����
���� ¼ ½0:098 � 0:452 0:887�T.

For a small perturbation q� ¼ þ0:1, the coordinates of the perturbed point are computed as

xpþ ¼ w1
ðz0Þ þ 0:1n0 ¼ ½ 6:513 �1:812 63:418 �T.

Solving Eq. (33) by the modified Newton–Raphson method, the iterations converge to a solution
z ¼ 2:321 1:222 �3:502

� �T
. Similarly, the other perturbed point xp� due to q� ¼ �0:1 can be computed as

xp� ¼ w1
ðz0Þ � 0:1n0 ¼ ½ 6:494 �1:721 63:241 �T.

The iterations also converge to a solution z ¼ ½ 2:393 1:231 �3:463 �T. Thus, both perturbation points are inside
the workspace. Therefore, the subsurface w1 is an internal subsurface. For example, select the point p2 on the subsurface
w2, which has joint coordinates z0 ¼ ½ q2ð1:13662Þ q3ð1:40056Þ q1ð0Þ �

T. The normal vector at this point is calculated
as

n0 ¼ ½ 0:098 �0:452 0:887 �T.
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For a small positive perturbation @� ¼ þ0:1, the perturbed point is

xpþ ¼ ½�6:211 �7:245 69:646 �T.

Solving the corresponding equation of Eq. (29), a convergence solution can be obtained as z ¼ ½ 2:276 1:114 1:882 �T.
However, a solution cannot be found for the negative perturbation point with q� ¼ �0:1. This indicates that w2 is a
boundary subsurface of the workspace.

Using this technique, the boundary subsurfaces of each singular surface are identified. These surfaces are depicted in
Fig. 7, from two different points of views. The volume enclosed by these surfaces is the workspace.
3.4. 4-DOF RPRP example

A spatial 4-DOF manipulator is shown in Fig. 8. The manipulator has 2 revolute and 2 prismatic joints and its DH
parameters are presented in Table 2.

The joint profiles are defined as q1ðt1Þ ¼ pt1, q2ðt2Þ ¼ 12t2 þ 20, q3ðt3Þ ¼ �7p=4t23 þ 3:5pt3 � p=4, q4ðt4Þ ¼ �6:667t24þ

20t4 þ 10, where 0pt1p2, 0pt2p2.5, 0pt3p1:53452, 0pt4p2:36586.
The position vector of the end-effector is formulated as

x ¼ UðqðtÞÞ ¼

q4 cos q1 cos q3 þ 30 cos q1

q4 sin q1 cos q3 þ 30 sin q1

q4 sin q3 þ q2

2
64

3
75 (43)

and the inequality constraints are parameterized as t1 ¼ 1þ sin l1, t2 ¼ 1:25þ 1:25 sin l2, t3 ¼ 0:76726þ 0:76726 sin l3,
and t4 ¼ 1:18293þ 1:18293 sin l4, where t ¼ ½ t1 t2 t3 t4 �T, k ¼ ½ l1 l2 l3 l4 �T.

The Jacobian matrix is derived as

½Hq� � ¼

Uq 01 02

I Ct 03

04 I tk

2
64

3
75
11�12

, (44)
X0

Y0

Z0

Z1

X1

X2

Z2

X3

Z3 Z4

X4

30

Fig. 8. A spatial 4-DOF RPRP manipulator.

Table 2

DH table for the spatial 4-DOF RPRP manipulator

yi di ai ai

1 q1 0 0 0

2 0 q2 p/2 30

3 p/2+q3 0 p/2 0

4 0 q4
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where

UqðqÞ ¼

�q4 sin q1 cos q3 � 30 sin q1

q4 cos q1 cos q3 þ 30 cos q1

0

0

0

1

�q4 cos q1 sin q3

�q4 sin q1 sin q3

q4 cos q3

cos q1 cos q3

sin q1 cos q3

sin q3

2
664

3
775
3�4

, (45)

Ct ¼

�p 0 0 0

0 �12 0 0

0 0 3:5pðt3 � 1Þ 0

0 0 0 13:334t4 � 20

2
6664

3
7775
4�4

, (46)

tk ¼

� cos l1 0 0 0

0 �1:25 cos l2 0 0

0 0 �0:76726 cos l3 0

0 0 0 �1:18293 cos l4

2
6664

3
7775
4�4

. (47)

3.4.1. Type I: Jacobian singularities

Since [Uq] is a (3� 4) block matrix, there are four equations that are equal to zero and that are to be solved
simultaneously. Solution to the simultaneous equations is given by q4 ¼ �30 s q3; this solution does not satisfy the joint
profiles. Therefore, the rank-deficiency criterion of the Jacobian yields no singular set.

3.5. Type II: instantaneous singularities

Applying the row-rank deficiency condition to Eq. (46), i.e., Det½Ct� ¼ 0, yields t3 ¼ 1:0, and t4 ¼ 1:5. Therefore, an
instantaneous singularity set is identified as p1 ¼ fq3ð1:0Þ; q4ð1:5Þg.

3.5.1. Type III singularities

This includes combinations of joint outer limits and instantaneous limits as follows: p2 ¼ fq3ð1:53452Þ; q4ð0Þg,
p3 ¼ fq3ð1:53452Þ; q4ð2:36586Þg, p4 ¼ fq2ð0Þ; q3ð0Þg, p5 ¼ fq2ð0Þ; q3ð1:53452Þg, p6 ¼ fq2ð0Þ; q4ð0Þg, p7 ¼ fq2ð0Þ; q4ð2:36586Þg,
p8 ¼ fq2ð2:5Þ; q3ð0Þg, p9 ¼ fq2ð2:5Þ; q4ð0Þg, p10 ¼ fq2ð2:5Þ; q4ð2:36586Þg, p11 ¼ fq3ð0Þ; q4ð0Þg, p12 ¼ fq3ð0Þ; q4ð2:36586Þg, p13 ¼
fq3ð1Þ; q4ð0Þg, p14 ¼ fq3ð1Þ; q4ð2:36586Þg, p15 ¼ fq2ð0Þ; q3ð1Þg, p16 ¼ fq2ð2:5Þ; q3ð1Þg, p17 ¼ fq1ð0Þ; q3ð1Þg, p18 ¼ fq1ð2Þ; q3ð1Þg,
p19 ¼ fq3ð0Þ; q4ð1:5Þg, p20 ¼ fq3ð1:53452Þ; q4ð1:5Þg, p21 ¼ fq2ð0Þ; q4ð1:5Þg, p22 ¼ fq2ð2:5Þ; q4ð1:5Þg, p23 ¼ fq1ð0Þ; q4ð1:5Þg,
p24 ¼ fq1ð2:5Þ; q4ð1:5Þg.

3.5.2. Type IV: coupled singularities

The block tk is rank deficient at t4 ¼ 0. Substituting t4 ¼ 0 into U(q), computing [Uq], then ½UqgUq4 � is defined as

½UqgUq4 � ¼

�30 sin q1 � 10 cos q3 sin q1 0 �10 cos q1 sin q3

�30 cos q1 þ 10 cos q3 cos q1 0 �10 sin q1 sin q3

0 1 10 cos q3

2
64

3
75

and applying the rank deficiency condition to ½UqgUq4 �, where qqðtlimitÞ ¼ q4ðt
L
4 Þ, yields a solution q3 ¼ 0, which is at

t3 ¼ 0:07418. Therefore, a singular set is identified as p ¼ ½p̂; qqðtlimitÞ� ¼ p25 ¼ fq3ð0:07418Þ; q4ð0Þg, similarly,
p26 ¼ fq3ð0:07418Þ; q4ð2:36586Þg.

The block Ct is rank deficient at t4 ¼ 1:5. Substituting t4 ¼ 1:5 into U(q), computing [Uq], then ½UqgUq4 � is defined

JJ ¼

�30 sin q1 � 25 cos q3 sin q1 0 �25 cos q1 sin q3

�30 cos q1 þ 25 cos q3 cos q1 0 �25 sin q1 sin q3

0 1 25 cos q3

2
64

3
75,

and applying the rank deficiency condition to JJ where qqðtinstÞ ¼ q4ðt
inst
4 Þ yields a solution q3 ¼ 0, which is at t3 ¼ 0:07418.

Therefore a singular set is identified as p27 ¼ fq3ð0:07418Þ; q4ð1:5Þg. Substituting each singularity set into Eqs. (43)
yields parametric equations of singular surfaces in R3. Fig. 9 shows the cross sections of singular surfaces due to different
singular sets.
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Fig. 9. Cross–sections of the singular surfaces: (a) due to p1 and p13,y,p18; (b) due to p19,y,p21; (c) due to p25, p26, p27; and (d) due to p2,y,p12.
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Applying the surface intersection method and the boundary identification algorithm presented in Section 2 yields the
final enveloped workspace of the 4-DOF RPRP manipulator shown in Fig. 10.
4. Conclusions

A general formulation for determining workspace boundaries in closed form for general serial manipulators with non-
unilateral constraints has been presented. The workspace constraint function was formulated in terms of generalized
coordinates, including inequality constraints imposed on each joint’s time function. It was shown that Jacobian row-rank
deficiency conditions used to determine degenerate conditions can be employed here to generate constant singular sets and
to identify coupled singular behavior, where four distinct types of singular sets have been identified. It was shown that the
formulation can be characterized as a constraint function, whose Jacobian rank deficiency provides a rigorous, consistent
method for delineating singular behavior. It was also shown that by using a surface-surface intersection method the
singular surfaces will be divided into subsurfaces. A general visualization algorithm (perturbation method) can then be
implemented to depict the boundary subsurfaces of the workspace envelope. From this study it was shown that although
there are more singular surfaces for non-unilateral constraints compared to unilateral constraints, for the same serial
manipulator and same range of motions, the final workspace boundary is the same for unilateral and non-unilateral
constraints.



ARTICLE IN PRESS

Fig. 10. Two views of the enveloped workspace of a 4-DOF RPRP manipulator.
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